首页> 外文OA文献 >Bayesian nonparametric hierarchical modeling for multiple membership data in grouped attendance interventions
【2h】

Bayesian nonparametric hierarchical modeling for multiple membership data in grouped attendance interventions

机译:多隶属度的贝叶斯非参数层次建模   分组出勤干预中的数据

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We develop a dependent Dirichlet process (DDP) model for repeated measuresmultiple membership (MM) data. This data structure arises in studies underwhich an intervention is delivered to each client through a sequence ofelements which overlap with those of other clients on different occasions. Ourinterest concentrates on study designs for which the overlaps of sequencesoccur for clients who receive an intervention in a shared or grouped fashionwhose memberships may change over multiple treatment events. Our motivatingapplication focuses on evaluation of the effectiveness of a group therapyintervention with treatment delivered through a sequence of cognitivebehavioral therapy session blocks, called modules. An open-enrollment protocolpermits entry of clients at the beginning of any new module in a manner thatmay produce unique MM sequences across clients. We begin with a model thatcomposes an addition of client and multiple membership module random effectterms, which are assumed independent. Our MM DDP model relaxes the assumptionof conditionally independent client and module random effects by specifying acollection of random distributions for the client effect parameters that areindexed by the unique set of module attendances. We demonstrate how thisconstruction facilitates examining heterogeneity in the relative effectivenessof group therapy modules over repeated measurement occasions.
机译:我们针对重复测量多成员(MM)数据开发了一个相关的Dirichlet过程(DDP)模型。这种数据结构出现在研究中,在该研究中,通过一系列元素在不同情况下与其他客户的元素重叠向每个客户提供干预。我们的兴趣集中在研究设计上,对于那些接受以共享或分组方式进行干预的客户,其成员可能会在多个治疗事件中发生变化的情况下,序列重叠会发生。我们的激励性应用重点在于评估通过一系列认知行为疗法会话模块(称为模块)进行的集体治疗干预的有效性。开放注册协议允许以任何方式在客户端之间产生唯一的MM序列的方式在任何新模块的开头输入客户端。我们从一个模型开始,该模型包括附加的客户和多个隶属模块随机效应项,它们被假定为独立的。我们的MM DDP模型通过指定一组由唯一的模块出勤率索引的客户端效果参数的随机分布集合,放宽了条件独立的客户端和模块随机效果的假设。我们证明了这种构造如何在重复测量的情况下促进检查组治疗模块相对有效性中的异质性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号